Linear Algebra Examples

Find the Eigenvalues [[2,1],[3,2]]
Step 1
Set up the formula to find the characteristic equation .
Step 2
The identity matrix or unit matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere.
Step 3
Substitute the known values into .
Tap for more steps...
Step 3.1
Substitute for .
Step 3.2
Substitute for .
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply by each element of the matrix.
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply by .
Step 4.1.2.2
Multiply .
Tap for more steps...
Step 4.1.2.2.1
Multiply by .
Step 4.1.2.2.2
Multiply by .
Step 4.1.2.3
Multiply .
Tap for more steps...
Step 4.1.2.3.1
Multiply by .
Step 4.1.2.3.2
Multiply by .
Step 4.1.2.4
Multiply by .
Step 4.2
Add the corresponding elements.
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Add and .
Step 4.3.2
Add and .
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
The determinant of a matrix can be found using the formula .
Step 5.2
Simplify the determinant.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Expand using the FOIL Method.
Tap for more steps...
Step 5.2.1.1.1
Apply the distributive property.
Step 5.2.1.1.2
Apply the distributive property.
Step 5.2.1.1.3
Apply the distributive property.
Step 5.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 5.2.1.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.2.1.1
Multiply by .
Step 5.2.1.2.1.2
Multiply by .
Step 5.2.1.2.1.3
Multiply by .
Step 5.2.1.2.1.4
Rewrite using the commutative property of multiplication.
Step 5.2.1.2.1.5
Multiply by by adding the exponents.
Tap for more steps...
Step 5.2.1.2.1.5.1
Move .
Step 5.2.1.2.1.5.2
Multiply by .
Step 5.2.1.2.1.6
Multiply by .
Step 5.2.1.2.1.7
Multiply by .
Step 5.2.1.2.2
Subtract from .
Step 5.2.1.3
Multiply by .
Step 5.2.2
Subtract from .
Step 5.2.3
Reorder and .
Step 6
Set the characteristic polynomial equal to to find the eigenvalues .
Step 7
Solve for .
Tap for more steps...
Step 7.1
Use the quadratic formula to find the solutions.
Step 7.2
Substitute the values , , and into the quadratic formula and solve for .
Step 7.3
Simplify.
Tap for more steps...
Step 7.3.1
Simplify the numerator.
Tap for more steps...
Step 7.3.1.1
Raise to the power of .
Step 7.3.1.2
Multiply .
Tap for more steps...
Step 7.3.1.2.1
Multiply by .
Step 7.3.1.2.2
Multiply by .
Step 7.3.1.3
Subtract from .
Step 7.3.1.4
Rewrite as .
Tap for more steps...
Step 7.3.1.4.1
Factor out of .
Step 7.3.1.4.2
Rewrite as .
Step 7.3.1.5
Pull terms out from under the radical.
Step 7.3.2
Multiply by .
Step 7.3.3
Simplify .
Step 7.4
The final answer is the combination of both solutions.
Step 8
The result can be shown in multiple forms.
Exact Form:
Decimal Form: