Linear Algebra Examples

Find the Eigenvalues [[2,1],[3,2]]
[2132][2132]
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI2)
Step 2
The identity matrix or unit matrix of size 2 is the 2×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001]
Step 3
Substitute the known values into p(λ)=determinant(A-λI2).
Tap for more steps...
Step 3.1
Substitute [2132] for A.
p(λ)=determinant([2132]-λI2)
Step 3.2
Substitute [1001] for I2.
p(λ)=determinant([2132]-λ[1001])
p(λ)=determinant([2132]-λ[1001])
Step 4
Simplify.
Tap for more steps...
Step 4.1
Simplify each term.
Tap for more steps...
Step 4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([2132]+[-λ1-λ0-λ0-λ1])
Step 4.1.2
Simplify each element in the matrix.
Tap for more steps...
Step 4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([2132]+[-λ-λ0-λ0-λ1])
Step 4.1.2.2
Multiply -λ0.
Tap for more steps...
Step 4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([2132]+[-λ0λ-λ0-λ1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([2132]+[-λ0-λ0-λ1])
p(λ)=determinant([2132]+[-λ0-λ0-λ1])
Step 4.1.2.3
Multiply -λ0.
Tap for more steps...
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([2132]+[-λ00λ-λ1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([2132]+[-λ00-λ1])
p(λ)=determinant([2132]+[-λ00-λ1])
Step 4.1.2.4
Multiply -1 by 1.
p(λ)=determinant([2132]+[-λ00-λ])
p(λ)=determinant([2132]+[-λ00-λ])
p(λ)=determinant([2132]+[-λ00-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[2-λ1+03+02-λ]
Step 4.3
Simplify each element.
Tap for more steps...
Step 4.3.1
Add 1 and 0.
p(λ)=determinant[2-λ13+02-λ]
Step 4.3.2
Add 3 and 0.
p(λ)=determinant[2-λ132-λ]
p(λ)=determinant[2-λ132-λ]
p(λ)=determinant[2-λ132-λ]
Step 5
Find the determinant.
Tap for more steps...
Step 5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(2-λ)(2-λ)-31
Step 5.2
Simplify the determinant.
Tap for more steps...
Step 5.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.1
Expand (2-λ)(2-λ) using the FOIL Method.
Tap for more steps...
Step 5.2.1.1.1
Apply the distributive property.
p(λ)=2(2-λ)-λ(2-λ)-31
Step 5.2.1.1.2
Apply the distributive property.
p(λ)=22+2(-λ)-λ(2-λ)-31
Step 5.2.1.1.3
Apply the distributive property.
p(λ)=22+2(-λ)-λ2-λ(-λ)-31
p(λ)=22+2(-λ)-λ2-λ(-λ)-31
Step 5.2.1.2
Simplify and combine like terms.
Tap for more steps...
Step 5.2.1.2.1
Simplify each term.
Tap for more steps...
Step 5.2.1.2.1.1
Multiply 2 by 2.
p(λ)=4+2(-λ)-λ2-λ(-λ)-31
Step 5.2.1.2.1.2
Multiply -1 by 2.
p(λ)=4-2λ-λ2-λ(-λ)-31
Step 5.2.1.2.1.3
Multiply 2 by -1.
p(λ)=4-2λ-2λ-λ(-λ)-31
Step 5.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=4-2λ-2λ-1-1λλ-31
Step 5.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Tap for more steps...
Step 5.2.1.2.1.5.1
Move λ.
p(λ)=4-2λ-2λ-1-1(λλ)-31
Step 5.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=4-2λ-2λ-1-1λ2-31
p(λ)=4-2λ-2λ-1-1λ2-31
Step 5.2.1.2.1.6
Multiply -1 by -1.
p(λ)=4-2λ-2λ+1λ2-31
Step 5.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=4-2λ-2λ+λ2-31
p(λ)=4-2λ-2λ+λ2-31
Step 5.2.1.2.2
Subtract 2λ from -2λ.
p(λ)=4-4λ+λ2-31
p(λ)=4-4λ+λ2-31
Step 5.2.1.3
Multiply -3 by 1.
p(λ)=4-4λ+λ2-3
p(λ)=4-4λ+λ2-3
Step 5.2.2
Subtract 3 from 4.
p(λ)=-4λ+λ2+1
Step 5.2.3
Reorder -4λ and λ2.
p(λ)=λ2-4λ+1
p(λ)=λ2-4λ+1
p(λ)=λ2-4λ+1
Step 6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ2-4λ+1=0
Step 7
Solve for λ.
Tap for more steps...
Step 7.1
Use the quadratic formula to find the solutions.
-b±b2-4(ac)2a
Step 7.2
Substitute the values a=1, b=-4, and c=1 into the quadratic formula and solve for λ.
4±(-4)2-4(11)21
Step 7.3
Simplify.
Tap for more steps...
Step 7.3.1
Simplify the numerator.
Tap for more steps...
Step 7.3.1.1
Raise -4 to the power of 2.
λ=4±16-41121
Step 7.3.1.2
Multiply -411.
Tap for more steps...
Step 7.3.1.2.1
Multiply -4 by 1.
λ=4±16-4121
Step 7.3.1.2.2
Multiply -4 by 1.
λ=4±16-421
λ=4±16-421
Step 7.3.1.3
Subtract 4 from 16.
λ=4±1221
Step 7.3.1.4
Rewrite 12 as 223.
Tap for more steps...
Step 7.3.1.4.1
Factor 4 out of 12.
λ=4±4(3)21
Step 7.3.1.4.2
Rewrite 4 as 22.
λ=4±22321
λ=4±22321
Step 7.3.1.5
Pull terms out from under the radical.
λ=4±2321
λ=4±2321
Step 7.3.2
Multiply 2 by 1.
λ=4±232
Step 7.3.3
Simplify 4±232.
λ=2±3
λ=2±3
Step 7.4
The final answer is the combination of both solutions.
λ=2+3,2-3
λ=2+3,2-3
Step 8
The result can be shown in multiple forms.
Exact Form:
λ=2+3,2-3
Decimal Form:
λ=3.73205080,0.26794919
(
(
)
)
|
|
[
[
]
]
{
{
}
}
A
A
7
7
8
8
9
9
B
B
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]