Enter a problem...
Linear Algebra Examples
[2132][2132]
Step 1
Set up the formula to find the characteristic equation p(λ).
p(λ)=determinant(A-λI2)
Step 2
The identity matrix or unit matrix of size 2 is the 2×2 square matrix with ones on the main diagonal and zeros elsewhere.
[1001]
Step 3
Step 3.1
Substitute [2132] for A.
p(λ)=determinant([2132]-λI2)
Step 3.2
Substitute [1001] for I2.
p(λ)=determinant([2132]-λ[1001])
p(λ)=determinant([2132]-λ[1001])
Step 4
Step 4.1
Simplify each term.
Step 4.1.1
Multiply -λ by each element of the matrix.
p(λ)=determinant([2132]+[-λ⋅1-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2
Simplify each element in the matrix.
Step 4.1.2.1
Multiply -1 by 1.
p(λ)=determinant([2132]+[-λ-λ⋅0-λ⋅0-λ⋅1])
Step 4.1.2.2
Multiply -λ⋅0.
Step 4.1.2.2.1
Multiply 0 by -1.
p(λ)=determinant([2132]+[-λ0λ-λ⋅0-λ⋅1])
Step 4.1.2.2.2
Multiply 0 by λ.
p(λ)=determinant([2132]+[-λ0-λ⋅0-λ⋅1])
p(λ)=determinant([2132]+[-λ0-λ⋅0-λ⋅1])
Step 4.1.2.3
Multiply -λ⋅0.
Step 4.1.2.3.1
Multiply 0 by -1.
p(λ)=determinant([2132]+[-λ00λ-λ⋅1])
Step 4.1.2.3.2
Multiply 0 by λ.
p(λ)=determinant([2132]+[-λ00-λ⋅1])
p(λ)=determinant([2132]+[-λ00-λ⋅1])
Step 4.1.2.4
Multiply -1 by 1.
p(λ)=determinant([2132]+[-λ00-λ])
p(λ)=determinant([2132]+[-λ00-λ])
p(λ)=determinant([2132]+[-λ00-λ])
Step 4.2
Add the corresponding elements.
p(λ)=determinant[2-λ1+03+02-λ]
Step 4.3
Simplify each element.
Step 4.3.1
Add 1 and 0.
p(λ)=determinant[2-λ13+02-λ]
Step 4.3.2
Add 3 and 0.
p(λ)=determinant[2-λ132-λ]
p(λ)=determinant[2-λ132-λ]
p(λ)=determinant[2-λ132-λ]
Step 5
Step 5.1
The determinant of a 2×2 matrix can be found using the formula |abcd|=ad-cb.
p(λ)=(2-λ)(2-λ)-3⋅1
Step 5.2
Simplify the determinant.
Step 5.2.1
Simplify each term.
Step 5.2.1.1
Expand (2-λ)(2-λ) using the FOIL Method.
Step 5.2.1.1.1
Apply the distributive property.
p(λ)=2(2-λ)-λ(2-λ)-3⋅1
Step 5.2.1.1.2
Apply the distributive property.
p(λ)=2⋅2+2(-λ)-λ(2-λ)-3⋅1
Step 5.2.1.1.3
Apply the distributive property.
p(λ)=2⋅2+2(-λ)-λ⋅2-λ(-λ)-3⋅1
p(λ)=2⋅2+2(-λ)-λ⋅2-λ(-λ)-3⋅1
Step 5.2.1.2
Simplify and combine like terms.
Step 5.2.1.2.1
Simplify each term.
Step 5.2.1.2.1.1
Multiply 2 by 2.
p(λ)=4+2(-λ)-λ⋅2-λ(-λ)-3⋅1
Step 5.2.1.2.1.2
Multiply -1 by 2.
p(λ)=4-2λ-λ⋅2-λ(-λ)-3⋅1
Step 5.2.1.2.1.3
Multiply 2 by -1.
p(λ)=4-2λ-2λ-λ(-λ)-3⋅1
Step 5.2.1.2.1.4
Rewrite using the commutative property of multiplication.
p(λ)=4-2λ-2λ-1⋅-1λ⋅λ-3⋅1
Step 5.2.1.2.1.5
Multiply λ by λ by adding the exponents.
Step 5.2.1.2.1.5.1
Move λ.
p(λ)=4-2λ-2λ-1⋅-1(λ⋅λ)-3⋅1
Step 5.2.1.2.1.5.2
Multiply λ by λ.
p(λ)=4-2λ-2λ-1⋅-1λ2-3⋅1
p(λ)=4-2λ-2λ-1⋅-1λ2-3⋅1
Step 5.2.1.2.1.6
Multiply -1 by -1.
p(λ)=4-2λ-2λ+1λ2-3⋅1
Step 5.2.1.2.1.7
Multiply λ2 by 1.
p(λ)=4-2λ-2λ+λ2-3⋅1
p(λ)=4-2λ-2λ+λ2-3⋅1
Step 5.2.1.2.2
Subtract 2λ from -2λ.
p(λ)=4-4λ+λ2-3⋅1
p(λ)=4-4λ+λ2-3⋅1
Step 5.2.1.3
Multiply -3 by 1.
p(λ)=4-4λ+λ2-3
p(λ)=4-4λ+λ2-3
Step 5.2.2
Subtract 3 from 4.
p(λ)=-4λ+λ2+1
Step 5.2.3
Reorder -4λ and λ2.
p(λ)=λ2-4λ+1
p(λ)=λ2-4λ+1
p(λ)=λ2-4λ+1
Step 6
Set the characteristic polynomial equal to 0 to find the eigenvalues λ.
λ2-4λ+1=0
Step 7
Step 7.1
Use the quadratic formula to find the solutions.
-b±√b2-4(ac)2a
Step 7.2
Substitute the values a=1, b=-4, and c=1 into the quadratic formula and solve for λ.
4±√(-4)2-4⋅(1⋅1)2⋅1
Step 7.3
Simplify.
Step 7.3.1
Simplify the numerator.
Step 7.3.1.1
Raise -4 to the power of 2.
λ=4±√16-4⋅1⋅12⋅1
Step 7.3.1.2
Multiply -4⋅1⋅1.
Step 7.3.1.2.1
Multiply -4 by 1.
λ=4±√16-4⋅12⋅1
Step 7.3.1.2.2
Multiply -4 by 1.
λ=4±√16-42⋅1
λ=4±√16-42⋅1
Step 7.3.1.3
Subtract 4 from 16.
λ=4±√122⋅1
Step 7.3.1.4
Rewrite 12 as 22⋅3.
Step 7.3.1.4.1
Factor 4 out of 12.
λ=4±√4(3)2⋅1
Step 7.3.1.4.2
Rewrite 4 as 22.
λ=4±√22⋅32⋅1
λ=4±√22⋅32⋅1
Step 7.3.1.5
Pull terms out from under the radical.
λ=4±2√32⋅1
λ=4±2√32⋅1
Step 7.3.2
Multiply 2 by 1.
λ=4±2√32
Step 7.3.3
Simplify 4±2√32.
λ=2±√3
λ=2±√3
Step 7.4
The final answer is the combination of both solutions.
λ=2+√3,2-√3
λ=2+√3,2-√3
Step 8
The result can be shown in multiple forms.
Exact Form:
λ=2+√3,2-√3
Decimal Form:
λ=3.73205080…,0.26794919…